Problem 2

A function f is defined by

$$f(x) = \lim_{n \to \infty} \frac{x^{2n} - 1}{x^{2n} + 1}$$

Where is f continuous?

Solution

Rewrite the function like so.

$$f(x) = \lim_{n \to \infty} \frac{(x^2)^n - 1}{(x^2)^n + 1}$$

The limit of a quotient is the quotient of the limits, provided that the limit of the denominator is not equal to 0.

$$f(x) = \frac{\lim_{n \to \infty} \left\lfloor (x^2)^n - 1 \right\rfloor}{\lim_{n \to \infty} \left\lfloor (x^2)^n + 1 \right\rfloor}$$

The limit of a difference (sum) is the difference (sum) of the limits.

$$f(x) = \frac{\lim_{n \to \infty} (x^2)^n - \lim_{n \to \infty} 1}{\lim_{n \to \infty} (x^2)^n + \lim_{n \to \infty} 1}$$

The limit of a constant is just the constant.

$$f(x) = \frac{\lim_{n \to \infty} (x^2)^n - 1}{\lim_{n \to \infty} (x^2)^n + 1}$$

The limit of $(x^2)^n$ as $n \to \infty$ results in different values, depending on what x^2 is. There are three cases to consider.

When $x^2 < 1$, $\lim_{n \to \infty} (x^2)^n = 0$ When $x^2 = 1$, $\lim_{n \to \infty} (x^2)^n =$ undefined When $x^2 > 1$, $\lim_{n \to \infty} (x^2)^n = \infty$

Thus, the piecewise representation of f(x) is

$$f(x) = \begin{cases} -1 & x^2 < 1\\ \text{undefined} & x^2 = 1\\ 1 & x^2 > 1 \end{cases}$$

The points of discontinuity occur where $x^2 = 1$, that is, when $x = \pm 1$. Therefore, f is continuous for the following values of x.

$$\{x \mid x \neq \pm 1\}$$

www.stemjock.com

Figure 1: This is what f(x) looks like for -3 < x < 3.