Problem 2

A function f is defined by

$$
f(x)=\lim _{n \rightarrow \infty} \frac{x^{2 n}-1}{x^{2 n}+1}
$$

Where is f continuous?

Solution

Rewrite the function like so.

$$
f(x)=\lim _{n \rightarrow \infty} \frac{\left(x^{2}\right)^{n}-1}{\left(x^{2}\right)^{n}+1}
$$

The limit of a quotient is the quotient of the limits, provided that the limit of the denominator is not equal to 0 .

$$
f(x)=\frac{\lim _{n \rightarrow \infty}\left[\left(x^{2}\right)^{n}-1\right]}{\lim _{n \rightarrow \infty}\left[\left(x^{2}\right)^{n}+1\right]}
$$

The limit of a difference (sum) is the difference (sum) of the limits.

$$
f(x)=\frac{\lim _{n \rightarrow \infty}\left(x^{2}\right)^{n}-\lim _{n \rightarrow \infty} 1}{\lim _{n \rightarrow \infty}\left(x^{2}\right)^{n}+\lim _{n \rightarrow \infty} 1}
$$

The limit of a constant is just the constant.

$$
f(x)=\frac{\lim _{n \rightarrow \infty}\left(x^{2}\right)^{n}-1}{\lim _{n \rightarrow \infty}\left(x^{2}\right)^{n}+1}
$$

The limit of $\left(x^{2}\right)^{n}$ as $n \rightarrow \infty$ results in different values, depending on what x^{2} is. There are three cases to consider.

$$
\begin{array}{ll}
\text { When } x^{2}<1, & \lim _{n \rightarrow \infty}\left(x^{2}\right)^{n}=0 \\
\text { When } x^{2}=1, & \lim _{n \rightarrow \infty}\left(x^{2}\right)^{n}=\text { undefined } \\
\text { When } x^{2}>1, & \lim _{n \rightarrow \infty}\left(x^{2}\right)^{n}=\infty
\end{array}
$$

Thus, the piecewise representation of $f(x)$ is

$$
f(x)= \begin{cases}-1 & x^{2}<1 \\ \text { undefined } & x^{2}=1 \\ 1 & x^{2}>1\end{cases}
$$

The points of discontinuity occur where $x^{2}=1$, that is, when $x= \pm 1$. Therefore, f is continuous for the following values of x.

$$
\{x \mid x \neq \pm 1\}
$$

Figure 1: This is what $f(x)$ looks like for $-3<x<3$.

